Click here for the Homepage Click here for the Homepage Click here for the Homepage
Contents
Introduction
The Five Platonic Solids
The Thirteen Archimedean Solids
Prisms, Antiprisms, and Other Polyhedra
The Four Kepler-Poinsot Solids
Other Stellations or Compounds
Some Other Uniform Polyhedra
Conclusion
Notes
Bibliography

Photographs: Stanley Toogood’s
International Film Productions,
Nassau, Bahamas
Polyhedron Models
for the Classroom
by Magnus J. Wenninger

Notes

  1. Thomas L. Heath, A History of Greek Mathematics (New York: Oxford University Press, 1921), pp. 159-60.
    back

  2. H. S. M. Coxeter, M. S. Longuet-Higgins, and J. C. P. Miller, ‘-“ Uniform Polyhedra (“Philosophical Transactions of the Royal Society of London,” Ser. A, Vol. CCXLVI, No. 196 [London: Cambridge University Press, 1954]), p. 402.
    back

  3. Heath, op. cit., p. 162.
    back

  4. H. S. M. Coxeter, P. DuVal, H. T. Flather, and J. F. Petrie, The Fifty-nine Icosahedra (“Mathematical Series,” No. 6 [Toronto: University of Toronto Press, 1938]), pp. 8-18.
    back

  5. Coxeter, Longuet-Higgins, and Miller, op. cit., pp. 40 1-50.
    back

  6. Max Brueckner, Vielecke und Vielflache (Leipzig: Teubner, 1900).
    back

  7. Coxeter, Longuet-Higgins, and Miller, op. cit., p. 402.
    back

  8. H. S. M. Coxeter, Regular Polytopes (1st ed.; London: Methuen & Co., l948),p. ix.
    back

  9. Ibid. (2nd ed.; New York: The Macmillan Co., 1963), p. viii.
    back

  10. Felix Klein, Lectures on the Icosahedron (New York: Dover Publications, 1956), esp. chap. i, “The Regular Solids and the Theory of Groups.”
    back

Polyhedron Models
for the Classroom
by Magnus J. Wenninger
Reprinted with permission from
Polyhedron Models, copyright 1966
by the National Council of Teachers
of Mathematics. All rights reserved.
Previous Section Go to the PREVIOUS Section Go to the NEXT Section Next Section

Go to The Renaissance Man's Weeb Page
Click to E-Mail   Ragnar Torfason
2006 June 3